Brief information about the project

Name of the	AP19679878 «Conversion of plant biomass waste into microporous activated
project	carbons to successfully capture and separate CO_2 , N_2 and CH_4 »
Relevance	The idea of the project is to synthesize microporous activated coals from
Relevance	plant biomass waste by physical and chemical activation methods and to test
	synthesized activated coals in capture and separation of CO_2 , N_2 and CH_4
	from gas-air media. Kazakhstan occupies a leading position in the
	development of agriculture and during the harvesting and processing of
	agricultural products a huge amount of waste products is formed, which find
	little further use or burned. In this regard, the processing of plant biomass
	waste into activated carbon is an urgent task. The obtained activated carbons
	will find practical application in chemical enterprises for purification of gas-
	air emissions.
Purpose	Obtaining activated carbons from waste plant biomass with a developed
1 dipose	microporous surface structure by physical and chemical activation methods
	for capture and separation CO_2 , N_2 and CH_4 from gas-air media.
Objectives	1. Obtaining activated carbons from plant biomass waste by physical
Objectives	activation (thermal carbonization followed by activation by superheated
	water vapor) and studying their main physico-chemical properties.
	2. Preparation of activated carbons from plant biomass using the chemical
	activation method and selection of optimal conditions, as well as a chemical
	reagent for chemical activation to obtain carbons with a developed
	microporous surface structure. Determination of the main textural and
	physico-chemical properties of activated carbons prepared by chemical
	activation.
	3. Study of the effect of textural and physico-chemical properties of prepared
	activated carbons on the capture and separation of CO ₂ , N ₂ and CH ₄ .
Expected and	Expected results.
achieved results	1. Activated carbons from plant biomass waste by the method of physical
	activation will be obtained (thermal carbonization followed by activation
	with superheated water vapor) and their basic physicochemical properties
	will be studied.
	2. Activated carbons will be prepared from plant biomass using the chemical
	activation method and optimal conditions will be selected, as well as a
	chemical reagent for chemical activation to obtain carbons with a developed
	microporous surface structure. The main textural and physicochemical
	properties of activated carbons prepared by chemical activation will be
	determined.
	3. The influence of textural and physicochemical properties of prepared
	activated carbons on the capture and separation of CO_2 , N_2 and CH_4 will be
	studied.
	A abjourned regults
	Achieved results.
	To obtain activated carbons, the following plant biomass wastes were selected: corn cobs and grape seeds. Work was carried out to grind plant
	biomass waste to a fraction of 2-3 mm, then the resulting working fractions
	were subjected to carbonization (pyrolysis) in an inert atmosphere at three
	different temperatures (600 °C, 700 °C and 800 °C) with exposure at these
	temperatures for 1 hour. After the carbonization process (pyrolysis),
	activation was carried out with superheated water vapor at a temperature of
	$800 \circ C$ for 1 hour. Then the textural and physicochemical characteristics of
	1 000 c for i noui. Then the textural and physicoencimical characteristics of

[
	the resulting activated carbons were determined by such methods as: BET,
	SEM, XRD, Raman spectrometry, X-ray fluorescence analysis, IR-Fourier
	spectroscopy, determination of sorption capacity for iodine, determination of
	ash content, etc.
Research team	Research Team Members.
members with	
their identifiers	1. Project manager: Kishibayev Kanagat Kazhmukhanovich, PhD, leading
(Scopus Author	researcher.
ID, Researcher	Scopus Author ID: 56604294100
ID, ORCID, if	(https://www.scopus.com/authid/detail.uri?authorId=56604294100)
available) and	Researcher ID: C-7678-2015
links to relevant	(https://publons.com/researcher/2429119/kishibayev-kanagat-kkk/)
profiles	ORCID: https://orcid.org/0000-0003-1590-5243
1	Google Scholar:
	https://scholar.google.com/citations?user=XG23bY8AAAAJ&hl=ru
	ResearchGate: https://www.researchgate.net/profile/K-Kishibayev
	neseureneure. <u>napen/ www.neseurengaemeu promorri inteneurje</u> r
	Executors:
	2. Tokpayev Rustam Rishatovich, PhD, leading researcher:
	Scopus Author ID: 56998810900
	(https://www.scopus.com/authid/detail.uri?authorId=56998810900)
	Researcher ID: D-3859-2015
	(https://publons.com/researcher/2424520/rustam-r-tokpayev/)
	ORCID: https://orcid.org/0000-0002-0117-4454
	ResearcherGate: https://www.researchgate.net/profile/Rustam-Tokpayev
	Google Scholar:
	https://scholar.google.com/citations?user=bmnxQHEAAAAJ&hl=ru
	3. Khavaza Tamina Narimanovna , master, researcher:
	Scopus Author ID: 57345081100
	(https://www.scopus.com/authid/detail.uri?authorId=57345081100)
	ORCID: https://orcid.org/0000-0002-1614-3060
	ResearcherGate: https://www.researchgate.net/profile/Tamina-Khavaza
	4. Ibraimov Zair Tairovich , 3rd year doctoral student, researcher:
	Scopus Author ID: 57345388600
	(https://www.scopus.com/authid/detail.uri?authorId=57345388600)
	ORCID: https://orcid.org/0000-0002-1476-3231
	ResearcherGate: https://www.researchgate.net/profile/Zt-Ibraimov/research
	5. Ospanova Karlygash Atakanovna , leading engineer.
	6. Yergeshov Maksat Ildaruly, 3rd year student, laboratory assistant.
	7. Abdullanova Amina Moldabekovna, 3rd year student, laboratory
	assistant.
	8. Serafin Jaroslaw , University of Barcelona, PhD, leading researcher:
	•
	Scopus Author ID: 57193009079
	(<u>https://www.scopus.com/authid/detail.uri?authorId=57193009079</u>) Researcher ID: ABG-3073-2020
	(https://www.webofscience.com/wos/author/record/2141042)
	ORCID: https://orcid.org/0000-0003-3719-8762
	Google Scholar:
	https://scholar.google.com/citations?user=foV9wm4AAAAJ&hl=ru&oi=sra
	ResearchGate: https://www.researchgate.net/profile/Jaroslaw-Serafin

List of publications with links to	-
them	
Patents	-

Figure 1 – Installation for the Carbonization of Vegetable Raw Materials in an Inert Atmosphere

Figure 2 - Installation for superheated steam activation

Figure 3 – with ready-made activated carbon samples